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GENERALIZED LINEAR MODELS 

Generalized linear model (GLM) is an extension of the general linear model to the setup where 

the response variable may have a distribution far from Gaussian. The response can be 

continuous (with Gaussian or nonGaussian distribution) or discrete (proportion or count). Other 

conditions remain the same as in general linear models. In case you are not familiar with general 

linear models, we recommend that you familiarize with the general linear models before trying to 

grasp the essentials of the generalized linear models. A brief description of these models is 

available at this site under the term General linear models. 

As in case of general linear models, there is no restriction on the independent or explanatory 

variables in the generalized linear models. These variables could be continuous or discrete, may 

pertain to fixed effects or random effects (or may be mixed). When they are mixed, the model 

would be called generalized linear mixed model. But these explanatory variables must affect 

the response through linear coefficients although the variables themselves could be square or log 

or any such function. If the effect is not linear, the GLM will study only its linear part. Equation 

wise the GLM is  

 yi = β0 + β1x1 +  β2x2 +… + βKxK + εi, 

where yi is the response of the ith person or unit, the regression coefficients βs are linear (i.e., no 
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β
, etc.) but x2 could be x1

2
, etc.; and εi may not follow a Gaussian distribution in GLM. For 

general linear model, these errors are required to follow a Gaussian pattern, or nearly so if n is 

large. In the case of GLM, these errors may follow any of the wide spectrum of distributions of, 

what is known as, the exponential family. This family includes binomial, Poisson, exponential, 

Weibull, beta, gamma, etc. Notice that these distributions can be highly skewed and can belong 

to discrete variables. 

You may be aware that general linear model is the combination of the regression, the analysis 

of variance and the analysis of covariance but the response variable must be continuous in all 

these setups. Gaussian distribution is required in general linear models for building up 

confidence intervals and for tests of hypotheses on the model parameters although point 

estimates can be obtained with least square method even when the distribution is not Gaussian. 

These restrictions are dispensed with in GLM method. GLM uses, what is called a link function, 

which converts the response to a form that has a relatively easily analyzable distribution. For 

example, proportions that follow a binomial distribution are converted to logits—this 

transforms the probability between 0 and 1 to values that can be positive, negative or zero. 

Similarly counts (e.g., number of patients coming to a clinic) that follow a Poisson distribution 

are transformed to logarithms to yield to nearly a Gaussian pattern. Logit and log are the 

http://www.medicalbiostatistics.com/
http://www.medicalbiostatistics.com/general%20linear%20models.pdf
http://www.medicalbiostatistics.com/generalized%20estimating%20equations.pdf
http://www.medicalbiostatistics.com/general%20linear%20models.pdf


 

 

respective link functions in these situations. There are other link functions for other setups. No 

transformation is required if the response variable is already Gaussian. This is called identity 

link. However, in the GLM, just as in general linear models, various values of the response 

variable must not be correlated, that is they must belong to separate persons or units who do not 

affect each other and not, for example, belong to the same family who are likely to provide 

similar values at least to some extent. When the values are correlated, use Generalized estimating 

equations (GEE). 

Estimates of the regression coefficients βs are obtained such that the likelihood of the sample 

coming from the distribution postulated by the link is maximum. These are popularly called 

maximum likelihood estimates (MLEs). For Gaussian distribution, these MLEs are well known 

and can be easily derived, but many other distributions admissible under GLM require an 

iterative weighted least square procedure. Iteration in effect means that a start is made with some 

plausible estimates such as mean, checked if the model fits well to the observed data, and the 

estimates are revised according to the discrepancies found. This can go on for several iterations 

till such time that the updated estimates by two successive iterations are nearly the same. (This is 

called convergence – there may be situations where the estimates do not converge, in which case 

we say that we are not able to obtain the plausible estimates). Statistical packages are well 

trained to do these iterations for you, and you would not get wrong estimates if a standard 

package is used. These packages will give you the estimates of the βs, their standard errors (SEs) 

and will also test the statistical significance of each regression coefficient. You can then decide 

which of the explanatories is worth retaining and which ones can be discarded. 

As in the case of general linear models, standardization by subtracting mean and dividing 

by the standard deviation (SD) is recommended for explanatory variables, particularly for 

continuous variables, so that each gets similar importance. If standardization is not done, the 

variable with large values such as cholesterol level compared with hemoglobin level sways the 

estimates and the statistical tests. In statistical terms, the cholesterol level will get 

disproportionately large weight in calculations relative to the hemoglobin level in the absence of 

standardization. 

Goodness of fit of the model and statistical significance of the contribution of each or a set of 

explanatory variables is tested by deviance.  

The GLM method is due originally to Nelder and Wedderburn [1]. Further details of the 

method are available in Dobson and Barnett [2]. 

[1] Nelder JA, Wedderburn RWM. Generalized linear models. J Royal Statistical Soc, Ser A 1972;135;370-

84.http://biecek.pl/MIMUW/uploads/Nelder_GLM.pdf 

[2] Dobson AJ, Barnett A. An Introduction to Generalized Linear Models, Third Edition. Chapman & Hall/ CRC 

Press, 2008. 

 

file:///F:\abhaya\MedicalBiostatistics.com\generalized%20estimating%20equations.docx
file:///F:\abhaya\MedicalBiostatistics.com\generalized%20estimating%20equations.docx
file:///F:\abhaya\MedicalBiostatistics.com\generalized%20estimating%20equations.docx
http://biecek.pl/MIMUW/uploads/Nelder_GLM.pdf

