
 

 

HOME 

MedicalBiostatistics.com 
 

Generalized linear models 

Generalized estimating equations 

 

GENERAL LINEAR MODELS 

 

General linear model is the name given to the method that unifies the ordinary regression, the 

analysis of variance and the analysis of covariance. In all these setups, the response variable, 

also called the dependent, should be continuous and is expected to follow nearly a Gaussian 

distribution. The values must be independent and not correlated. This condition in effect means 

that the observations must belong to separate units or different persons and not belong to one 

family, one person at different points in time or different body sites, or any other affinity group 

that have tendency to be similar to one another.  

To fix ideas, denote the response of the ith person by yi and his or her explanatory variables 

by x1i, x2i,…, xKi. If you are trying to explain a particular kidney function by the person’s weight, 

age, sex, water intake per day, fiber content in the diet, etc., this notation is like saying that 3
rd

 

person (i = 3) in our study has kidney function y3 = 54 mg/dL and his weight x13 = 62 kg, age x23 

= 45 years, sex x33 = 0 (where 0 is the notation for females and 1 for males), water intake per day 

x43 = 3.4 liters, fiber content x53 = 340 g. Note that i = 3 in all these xs. Under these notations, a 

general linear model is given by  

 yi = β0 + β1x1i +  β2x2i+ … + βKxKi+εi, 

where yi is the response or dependent, and εi is the error that has Gaussian distribution with mean 

zero and any standard deviation (SD) σ. This is written as εi ~ N(0, σ). N stands for normal 

distribution, which we like to call Gaussian since the term normal has different meaning in health 

and medicine. Note that the SD is same for each i—the condition popularly known as 

homogeneity of variances or homoscedasticity.  

The xs are the explanatory or the independent variables and βs are the regression 

coefficients. These coefficients are the parameters of the model. The expression β0 + β1x1i +  

β2x2i+ … + βKxKi is the mean of all the persons in the target population whose explanatory values 

are x1i, x2i,…, xKi. This can be denoted by μi. This and the previous explanation regarding εi 

imply that yi ~ N(μi, σ). In our example, μi is the population mean of those persons whose weight 

is 62 kg, age 54 years, etc. If there are 16 persons in the population with exactly same values of 

all xs, they will most likely have different kidney function and β0 + β1x1i + β2x2i+ … + βKxKi is the 

notation of their mean. Thus general linear models are for means and not for individual values—

a fact that many forget while interpreting a model. You can see that the mean response will 

change if any x-value changes, for example, if age is different or weight is different. Now it 

should be clear that εi is the deviation of the response of the ith person in the population from its 
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mean of similar people, thus εi has zero mean. This is what is being called error. If the model is a 

good fit (which really means that the estimates of βs are such that the residuals are minimal—see 

next for the term residuals), their SD will be small. A large SD will indicate that the model is not 

a good fit. This SD is estimated by the square root of mean square error (MSE), which is the 

sum of the squares of the residuals divided by its degrees of freedom. Residuals are explained 

later on in this section. 

The model is linear so long as the coefficients are linear. That is, there is no β
2
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β
 or logβ 

type of coefficient. This means that when any xk increases by one, the response y is supposed to 

increase by its coefficient βk. The regression coefficient βk is generally interpreted as the net 

contribution or net effect of the variable xk (k = 1, 2, …, K) but the word net is too strong. For 

this to be really net contribution, the model must include all possible variables that can affect the 

response. This is a tall order first because it is generally not feasible to include all the variables, 

and second because only those variables can be included that are known or suspected. Many are 

unknown and this epistemic uncertainty is many times forgotten. An example given later in this 

section will clarify one aspect of the interpretation of the regression coefficient. In case the 

relationship is not linear, general linear model will limit itself to whatever is the linear part and 

ignore the rest. In this case, the model will not be a good fit to the data. 

However, there is no restriction on the xs. The type of xs distinguishes among ordinary 

regression, analysis of variance and the analysis of covariance. In ordinary regression, all xs have 

to be quantitative, in analysis of variance all xs have to be discrete—mostly defining the groups 

through indicator variables, and in the analysis of covariance these are mixed. It is easy to unify 

all these into one theoretical framework because basically all xs are considered fixed in this setup 

and the value of y is estimated for given values of the xs. The requirement of Gaussian 

distribution, independence and homoscedasticity is handy to pursue, what is called the 

maximum likelihood estimates (MLEs). This method finds those estimates of the parameters 

that make the observed values most likely. These are denoted by bs. Any standard statistical 

software will easily obtain these estimates for you when the model is properly specified. Proper 

specification means that you correctly tell the computer program which variable is to be treated 

as continuous, which categorical, etc. When these estimates are used, the model can be written 

as 

 yi = b0 + b1x1i +  b2x2i+ … + bKxKi + ei, 

and the estimated value of y for the ith person is 𝑦𝑖  = b0 + b1x1i +  b2x2i+ … + bKxKi. Note that the 

error term is now denoted by ei and called residual in the context of the sample. This is the 

difference between the mean response in the sample for the persons with values x1i,  x2i, … xKi of 

the explanatory variables and the actual observed response for the ith person. If there is only one 

person with these values of the xs, ei is the difference between the observed yi and the estimated 

𝑦𝑖 . 

Under Gaussian distribution of the response variable, the estimates bs of the regression 

coefficients βs also have Gaussian distribution. This allows to easily find the confidence 

intervals (CIs) for estimates of βs and to test hypotheses on them by using the property, for 

example, that the estimate ± 1.96*(estimated SE) is the 95% CI and (estimate – its mean)/(its 

estimated SE) has Student t distribution. This SE is estimated by the MSE as just explained. 

A simple example of a general linear model is the work of Ainslie et al. [1]. They examined 

how blood flow velocity in the middle cerebral artery (MCAv) in healthy humans is affected by 



 

 

physical activity, body mass index (BMI), blood pressure (BP) and age. Physical activity was 

assessed as active and inactive. Thus this is categorical. The response variable is MCAv, which 

is quantitative and it must have nearly same variance for different age and different physical 

activity, etc. for general linear models to be applicable. The authors found that BMI and BP did 

not have statistically significant contribution while age and physical activity were important for 

MCAv. They have reported separate model for the active and the inactive persons but these 

combine into the following. 

MCAv (in cm/sec) = 87.8 – 0.73*Age (in years) + 9.2*Activity – 0.03*Activity*Age, 

where Activity = 1 for physically active persons and Activity = 0 for inactive persons. When 

these values of Activity are substituted, the models become  

 MCAv (in cm/sec) = 87.8 – 0.73*Age (in years) for inactive persons, and  

 MCAv (in cm/sec) = 97.0 – 0.76*Age (in years) for active persons. 

This model means that MCAv reduced on average by 0.73 cm/sec for each year increase in age 

in inactive persons but by 0.76 cm/sec in active persons although the baseline for active persons 

was high (97.0 vs. 87.8). Gaussian distribution is not a requirement for getting these equations 

because the estimates of the regression coefficients can be obtained by the least square method. 

But the Gaussian distribution is needed to work out the CI. The authors also reported CI on these 

regression coefficients. Those who are aware will realize that this model is the same as the 

analysis of covariance where Age is the covariate. Analysis of covariance is the most generalized 

of the general linear models since it has both continuous and discrete independent variables. 

Adequacy of a general linear model is assessed by an F-test, which is obtained as the mean 

sum of squares due to the model and the mean sum of squares due to error (MSE). Statistical 

significance of each regression coefficient can also be tested. Appropriate statistical software 

will do it for you but the model must be properly specified. Many modifications of the model can 

be done to test other kinds of null hypotheses. For a complete description of the general linear 

models, their strength and weakness, see Vik [2]. 

When the distribution of the response variable is far from Gaussian, we need to fall back on 

the Generalized linear models (GLM) and if the responses are correlated we take help of the 

Generalized estimating equations (GEE). 

[1] Ainslie PN, Cotter JD, George KP, Lucas S, Murrell C, Shave R, Thomas KN, Williams MJ, Atkinson G. 

Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. J Physiol 2008 

Aug 15;586(16):4005-10. doi: 10.1113/jphysiol.2008.158279. Epub 2008 Jul 17. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2538930/ 

[2] Vik PW. Regression, ANOVA, and the General Linear Model: A Statistics Primer. Sage, 2013. 

 

http://www.medicalbiostatistics.com/generalized%20linear%20models.pdf
http://www.medicalbiostatistics.com/generalized%20estimating%20equations.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2538930/

